Prev | Next | Contents


NEW METHOD OF SEPARATING GOLD FROM IMPURE AMALGAM.

I had submitted to me lately a sample of amalgam from a mine in West Australia which amalgam had proved a complete puzzle to the manager and amalgamator. The Mint returns showed a very large proportion of impurity, even in the smelted gold. When retorted only, the Mint authorities refused to take it after they had treated two cakes, one of 119 oz., which yielded only 35 oz. 5 dwt. standard gold, and one of 140 oz., which gave 41 oz. 10 dwt. The gold smelted on the mine was nearly as bad proportionately. Thus, 128 oz. smelted down at the Mint to 87 oz. 8 dwt. and 109 oz. to 55 oz. 10 dwt. The impurity was principally iron, a most unusual thing in my experience, and was due to two causes revealed by assay of the ore and analysis of the mine water, viz., an excess of arsenate of iron in the stone, and the presence in large proportions of mineral salts, principally chloride of Calcium CaCl., sodium NaCl, and magnesium MgCl2, in the mine water used in the battery. The exact analysis of the water was as follows:--

Carbonate of Iron FeCO3 2.76 grains per gallon
Carbonate of Calcium CaCO3 7.61 grains per gallon
Sulphate of Calcium CaSO4 81.71 grains per gallon
Chloride of Calcium CaCl2 2797.84 grains per gallon
Chloride of Magnesium
Chloride of Sodium or
MgCl2 610.13 grains per gallon
Common Salt NaCl 5072.65 grains per gallon
Total solid matter 8572.70 = 19.5 oz. to the gallon.

It will be seen, then, that this water is nearly four times more salt that that of the sea. The effect of using a water of this character, as I have previously found, is to cause the amalgamation of considerable quantities of iron with the gold as in this case.

I received 10 oz. of amalgam, and having found what constituted its impurities proceeded to experiment as to its treatment. When retorted on the mine it was turned out in a black cake so impure as almost to make it impossible to smelt properly. I found the same result on first retorting, and after a number of experiments which need not be recapitulated though some were fairly effective, I hit on the following method, which was found to be most successful and will probably be so found in other localities where similarly unfavourable conditions prevail.

I took a small ball of amalgam, placed it in a double fold of new fine grained calico, and after soaking in hot water put it under a powerful press. The weight of the ball before pressing was 1583 gr. From this 383 gr. of mercury was expressed and five-eighths of a grain of gold was retorted from this expressed mercury. The residue, in the form of a dark, grey, and very friable cake, was powdered up between the fingers and retorted, when it became a brown powder; it was afterwards calcined on a flat sheet in the open air; result, 510 gr. of russet- coloured powder. Smelted with borax, the iron oxide readily separated with the slag; result, 311 gr. gold 871-1000 fine; a second smelting brought this up to 914-1000 fine. Proportion of smelted gold to amalgam, one-fifth.

The principal point about this mode of treatment is the squeezing out of the mercury, whereby the amalgam goes into the retort in the form of powder, thus preventing the slagging of the iron and enclosure of the gold. The second point of importance is thorough calcining before smelting.

Of course it would be practicable, if desired, to treat the powder with hydrochloric acid, and thus remove all the iron, but in a large way this would be too expensive, and my laboratory treatment, though necessarily on a small scale, was intended to be on a practical basis.

The amalgam at this mine was in this way afterwards treated with great success.

For the information of readers who do not understand the chemical symbols it may be said that

FeCO3 is carbonate of iron;
CaCO3 is carbonate of calcium;
CaSO4 is sulphate of calcium;
CaCl2 is chloride of calcium;
MgCl2 is chloride of magnesium;
NaCl is chloride of sodium, or common salt.




Prev | Next | Contents